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Abstract

In order to develop computational strategies for solidification processing of advanced engineering materials, one must address

several fundamental issues, including (i) a moving solid–fluid interface, (ii) geometrical complexities of both processing components

and solid–fluid interfaces, and (iii) disparate scales in length and time, ranging from the dimension of the processing system, to the

convection and diffusion scales, to the morphological scale, and to the capillary scale. Main implications from these observations are

that dynamic similarity can not be maintained in virtually any scale-up processes, and, even for laminar flows, direct numerical

simulation of a solidification problem can not be handled with current computing resources. In this article, we highlight recent

efforts in developing suitable computational techniques to facilitate a multi-scale approach which handles micro-, meso-, and macro-

scale phenomena in a coupled framework. Relevant modeling and computational techniques are summarized along with selected

examples at macroscopic and morphological scales. � 2002 Published by Elsevier Science Inc.

1. Introduction

The large scale production of high quality crystals
and alloys involves a number of complex physical
mechanisms typical of solidification processes. These
include heat and mass transport, dynamics of moving
interfaces, geometrical configurations, material thermo-
physical properties, and, most critically, non-linear
coupling among them. These complications have tradi-
tionally resulted in simplified analyses carried out under
quite restrictive assumptions such as idealized geometry,
assumed boundary conditions, and constant thermo-
physical properties; in these reduced models, important
convection modes created by buoyancy and capillary
effects, critical in many solidification processes, are also
often neglected. Accordingly, the predictive capability of
such simplified model is quite limited. A comprehensive
macroscopic solidification processing model has to ac-
count for geometrical complexities, temperature and

phase dependent material properties, buoyancy driven
convection and its influence on the melt/crystal interface
and the resulting thermal distribution within the crystal.
In particular, process scale-up from small laboratory
experiments to large production is not well addressed in
theory. To accurately simulate the microscopic (mor-
phological) characteristics, information from the macro-
scopic level needs to be accounted for in much finer
length scales in order to address the interaction between
thermal and capillary aspects, and their impact on so-
lidified structures. Computational tools can be very
valuable for helping us gain physical insight and, based
on this insight, improve and optimize the process design.
They offer a framework for a convenient and relatively
inexpensive platform for performing parametric studies
to cover the entire range of processing conditions.

One issue intrinsic to the solidification process is
the presence and interaction of different length and
time scales in the system. To illustrate this point, let us
consider three-dimensionless parameters encountered
during many practically important solidification pro-
cesses, namely, Rayleigh number (Ra), Marangoni
number (Ma), and Stefan number (St). A straightfor-
ward inspection reveals that these dimensionless pa-
rameters scale differently with respect to the geometrical
dimensions of the solidification component (l): Ra is
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proportional to l3,Ma to l, while St is independent of l.
Hence, in practical terms, it is impossible to conduct a
laboratory experiment that can maintain the same val-
ues of all the dimensionless parameters since a change of
length scale of the melt impacts different dimensionless
parameters differently. In other words, between labora-
tory and production scales, the relative dominance of
different transport mechanisms, such as molecular dif-
fusion, and buoyancy and surface tension driven con-
vection, changes (Shyy, 1994). Furthermore, the Prandtl
number and Schmidt number should also be kept un-
changed if one wants to study the transport character-
istics in a given processing condition, thus substantially
restricting one’s flexibility of choosing a substitute ma-
terial which is easier to handle in a laboratory set-up.
Experimentally, it is very difficult to maintain a strict
similarity of the transport processes between solidifica-
tion facilities of different length scales via the change of,
say, temperature and transport properties to accom-
modate the variation in l.

In addition to the scaling issue, fundamentally, the
presence of multiple scales in time and length makes
numerical simulation of solidification dynamics a chal-
lenging task. In casting components, the global length
scales typically are l ¼ Oð100Þ m. As summarized by
Shyy and Udaykumar (2000), for slow growth, with
typical values for metals in directional solidification, the
diffusion of solute takes place typically at a length scale
of dc ¼ Oð10�3Þ m. Interfacial energy typically presents
a length scale of d0 ¼ r=L, where r is the interfacial
energy and L is the latent heat of fusion. Typically this
gives a scale of O(10�8–10�9) m. The resultant micro-
structural length scale measured by the dendrite tip ra-
dius is around O(10�6) m. As an illustration, consider a
schematic of the solidification process of a material as
shown in Fig. 1. When solidification ensues from the
melt the interface between the solid and liquid is seldom
planar. Macroscopic undulations of the interface are
unavoidable due to the effects of convection. Convection
may result due to thermal/solutal buoyancy effects, or

Fig. 1. Illustration of the features and corresponding length scales occurring in the solidification process at the macro-, meso-, and microscales.
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surface tension effects, or due to imposed stirring/
pouring action. Thus, this global convection pattern
gives rise to compositional non-uniformity in the solid-
ified product. Furthermore, in the solidification of al-
loys, the transition from liquid to solid usually occurs
through a two-phase (solid–liquid) layer known as the
mushy zone (Flemings, 1974; Shyy, 1994; Worster,
1997). The mushy zone consists of a network of mi-
croscopic solid structures which leads to a porous me-
dium-like appearance of this zone. The macroscopic
distribution of the solute rejected through the mushy
region at the macro-level (‘‘macrosegregation’’) depends
heavily on the characteristics of the mush region.

The importance of the microstructural features for
the materials engineer are considerable. These structures
present a second level of inhomogeneities in the cast
structure, particularly in the form of solutal inhomoge-
neity due to the rejection of solute from the solid into
the liquid and its accumulation in the regions between
the solid network. This leads to the ‘‘microsegregation’’
of solute in the final product, and the final grain struc-
ture of the solid is determined by these instabilities at the
solid–liquid interface. Typical cast structures feature a
mixture of grain sizes, orientations and types (columnar/
equiaxed) (Flemings, 1974; Hurle, 1993), and prediction/
control of the grain structure hinges on controlling the
global thermal and convective phenomena in the casting
operation so that this desired microstructure can be in-
duced. Thus, there is an intimate connection between the
macro-phenomena (at the scale of the casting) and the
microstructure obtained.

The split in scales between the macro- and micro-
events in the solidification process renders the modeling
and computation of industrial casting processes rather
difficult. In a simulation it is impossible at present to
calculate the processes at all scales at the same time. This
situation is akin in some respects to that in modeling of
turbulent flows, where direct numerical simulation of all
scales is only possible currently for a limited range of
flow conditions. For instance, the sensitivity of predicted
macro-phenomena to micro-models and to numerical
accuracy and resolution has not been addressed. This is
even more striking because a large number of the micro-
model components are usually modeled by means of
augmented dissipation effects (akin to eddy viscosity
approaches in turbulence modeling). Furthermore, as
pointed out by Shyy et al. (1997), such closure issues
exist because of the averaging practice adopted at the
theoretical level to account for the effect of unresolvable
scales, and the need for subgrid models exists for both
laminar and turbulent flows alike. However, in solidifi-
cation modeling proposed in the literature, these aug-
mented dissipation coefficients are chosen in ad hoc
fashion. Therefore, it is difficult to separate physics from
the effects of dissipation, both numerical as well as
modeled.

In this article, we review some of our recent efforts in
developing suitable computational techniques to facili-
tate a multi-scale approach which handles micro-, meso-,
and macro-scale phenomena directly, employing volume
averaging as the matching procedure between different
scales. The goal is to extrapolate a given materials
processing technique from a small size laboratory set-up
to a large production size, and to investigate the solid-
ification characteristics at both macroscopic and mor-
phological scales.

2. Multi-scale volume averaging

Various averaging procedures have been proposed, as
reviewed by Beckermann and Viskanta (1993) and by
Shyy et al. (1997). In addition to the single scale aver-
aging process, Wang and Beckermann (1994, 1996) have
presented a dual-scale volume averaging operation. The
macro-transport equations are solved at the scale l,
shown in Fig. 1. The domain is discretized into a grid of
size h. The dual-scale averaging is then required since the
micro-transport equations are composed of two pre-
dominant scales. These are the processes occurring at
the scale involving the grain envelopes (the mesoscale of
k1, the primary dendrite spacing) and that within each
grain which may be characterized by the secondary
dendrite arm spacing (the microscale of k2). Thus, one
first averages over the secondary side branches to obtain
the information over the level of a grain. Then one av-
erages the phenomena involving the individual grains to
get the behavior at the macro-scale (at scale h). This
telescopes the phenomena at two-levels (k1 and k2) into
subgrid scale information at scale h. This implies filter-
ing of information at the resolution k2 followed by an-
other filtering at resolution k1. The process can be
illustrated schematically as in Fig. 2. For any variable w,
such as the solid fraction fs, the volume averaging ob-
tains the subgrid representation to be adopted in the
macro-scale computations. It is based on the view that
such a dual-scale averaging process will provide a better
subgrid-scale modeling capability than a single-scale
averaging procedure described in Beckermann and
Viskanta (1993) and Ganesan and Poirier (1990).

Detailed derivation and associated modeling issues of
the single- and dual-scale averaging procedures can be
found in Shyy et al. (1997) and Shyy and Udaykumar
(2000), respectively. The modeling concept and the re-
lationships between phenomena at the macro-, micro-
and mesoscales pertaining to the transport and growth
of dendrites in a melt are given in Fig. 3. The approach
taken by Shyy and Udaykumar (2000) is to numerically
simulate phenomena at each scale by including all the
necessary physics such as convection effects, anisotropy
and capillarity, differences in material properties, par-
ticularly species diffusion coefficients between solid and
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liquid and the variation of the solute concentrations in
the interdendritic network. The numerical simulation of
the mesoscale field will require modeling to obtain the
envelope velocity wne, the internal solid fraction fi of
the grain and the evolution of mesoscale properties (i.e.
the average quantities h/i) The models adopted for the
mesoscale evolution will be a priori tested, i.e. they will
be checked for physical realizability with the results of
numerical simulations of the microscale. The subgrid
scale model will then be provided by the evolution of the

meso-level field. At the meso-level discrete particles
representing the grains will be transported on the
macro-grid and the averaging over this distribution will
provide the properties of the mushy zone such as per-
meability, conductivity etc. If the number of particles in
a grid cell is n and the average volume of the particles is
V and the internal solid fraction of the grain is fi, the
solid fraction in the cell is fs ¼ nV fi. Thus the mixture
quantities in the cell can be calculated. The value of n in
a cell depends on the number of crystals in the cell which

Fig. 2. Illustration of the filtering or averaging process involved in the dual-scale averaging to obtain macroscopic volume-averaged equations.

Fig. 3. The relationships between phenomena at the macro-, micro- and mesoscales pertaining to the transport and growth of dendrites in flow.
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includes the crystals nucleated in the cell and crystals
transported to that cell in that time step. Subgrid
modeling is required for obtaining V and fi.

3. Interface resolution techniques

Very broadly, the methods for handling these prob-
lems can be classified into the so called Eulerian, La-
grangian, and the Eulerian–Lagrangian (Shyy et al.,
1996). The Lagrangian method makes use of a moving
grid in which a particular grid line is made to coincide
with the interface. The required jump conditions are
easily applied across the interface. Thus the interface is
strictly treated as a discontinuity without any numerical
diffusion. The Eulerian approach uses a fixed compu-
tational grid, and additional field variables are intro-
duced to model the presence of a moving discontinuity
on the computational grid. The interface is not explicitly
tracked but has to be reconstructed from the distribu-
tion of certain field variable (Brackbill et al., 1992;
Scardovelli and Zaleski, 1999; Voller and Prakash,
1987).

In the Eulerian–Lagrangian method a fixed compu-
tational grid is used along with explicit tracking of the
interface by means of marker particles (Shyy et al., 1996,
1998). One can also resort to unstructured representa-
tion of the interface in three dimensions, with periodic
remeshing. The interface is represented by a set of
marker particles as a lower dimensional entity, i.e., a
curve in a two-dimensional case and a surface in a three-
dimensional case. The interface is advected according
to the interfacial conditions like in the Lagrangian
method.

3.1. Macroscopic simulation: moving grid method

The moving grid method can be fruitfully employed if
the interface shape variations are not severe. For this
reason, this approach is often used in the macroscopic
model (Shyy, 1994). In our approach a combined Car-
tesian-contravariant velocity formulation is adopted.
The Cartesian velocities serves as the primary variables,
and the grid motion is handled through the definition of
contravariant velocity components. Geometric conser-
vation has been ensured through proper definition of
metric terms for both convection and diffusion terms,
and updating the jacobian in a consistent manner. For
detailed information, see Shyy (1994).

For systems that can be cast under the Boussinesq
approximation, the non-dimensional equations take the
form:

oUi

oXi
¼ 0

oUi

os
þ oUjUi

oXj
¼ � oP

oXi
þ Pr

o2Ui

oX 2
i
� RaPr gi

oH
os

þ oUjH
oXj

¼ o2H
oX 2

i

The conduction heat transfer in the solid region is de-
scribed by

oH
os

¼ o2H
oX 2

i

where, Pr ¼ v=a is the Prandtl number, and Ra is the
Rayleigh number. The Rayleigh number measures the
strength of the buoyancy induced natural convection
and is given by

Ra ¼ gbTðTH � TMÞH 3Pr
v2

The Stefan condition, can be written in non-dimensional
form as

V �
N ¼ St½ðrH �~nnÞs � ðrH �~nnÞl�

The Stefan number St is the ratio of sensible heat to the
latent heat, CpðTH � TMÞ=L, where Cp is the specific heat,
TH the temperature imposed on the melt pool, TM the
melting temperature, and L the latent heat.

We present an example with a moving solidification
front in a rectangular domain (the aspect ratio between
width and height ¼ 2, depicted in Fig. 4. The left
and right walls are of constant temperature, and the
top/bottom walls are adiabatic. The parameters defin-
ing the problem thus are the Rayleigh number, Ra, the
Prandtl number, Pr, the Stefan number, St; they are
Ra ¼ 2:2 105, Pr ¼ 2:08 10�2, and St ¼ 4:02 10�2.
In the moving grid technique, the grid needs to be re-
generated at each time step because we require it to
conform to the phase front which is constantly chang-
ing. Algebraic grid generation based on transfinite in-
terpolation obtains the interior grid distribution in a
domain from the distribution of points on the boundary
of the domain. Stream function and temperature plots

Fig. 4. Melting of a pure metal between vertical isothermal walls.
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are shown in Fig. 5. For more details, see Shyy et al.
(1998).

In addition to employing the moving grid technique
to model a phase boundary, one can also combine this
approach with a fixed grid solidification model such as
the enthalpy formulation (Shyy, 1994; Shyy et al., 1996;
Voller and Prakash, 1987). In such a case, the moving
grid technique performs the function of following the
geometric variations of the rigid boundary, while the
fixed grid solidification model handles the solidification
dynamics without resorting to grid redistribution. Such
an approach strikes a compromise between the various
aspects of a very complicated process involving moving
boundaries from both process operation (such as am-
poule movement) and intrinsic physics (phase boundary
movement). As an example, Bridgman growth of
b-NiAl, an intermetallic, is discussed. In this case, the
combination of the furnace enclosure and the ampoule
presents a very complicated geometry. To render the
computations tractable and simultaneously obtain ade-

quate resolution in the ampoule region, a two-level
strategy is employed. Level 1 simulates the entire do-
main and is referred to as the global furnace model.
Level 2 concentrates on the ampoule region, with more
refined mesh resolutions, and obtains its boundary
conditions from the level 1 or the global simulation.
With this two-level strategy, we can obtain useful in-
formation at the global level and yet obtain adequate
resolution at the melt/crystal interface.

The computational technique in this case embodies
the enthalpy formulation along with curvilinear mesh-
ing, consistent second-order discretization in strong
conservation laws. The grid distribution is adjusted
according to the movement of the ampoule. Stream
function and isotherm distributions at two representa-
tive ampoule positions in this device are depicted in Fig.
6. Fig. 7 shows that the temperature distribution along

Fig. 5. Stream function and temperature contours in a solidifying melt

contained in a rectangular domain, computed using the moving grid

technique: s (i) 0.83 (2 min) (ii) 2.07 (5 min) (iii) 2.76 (6.67 min).

Fig. 6. Solution characteristics of NiAl solidification at two ampoule

positions: (a) H ¼ 43 mm and (b) H ¼ 87 mm.
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the centerline and the ampoule outer wall obtained from
the computational simulation matches the experimental
measurements well.

Finally, we discuss the scale-up issue by presenting
two simulations of identical geometrical shapes and
thermal boundary conditions, but with different physi-
cal dimensions. Fig. 8(a) depicts a Bridgman system for
growing the CdTe crystal, with the input thermal pro-
file shown. These II–VI materials combine elements
with two and six valence electrons, and are attractive for
future development in telecommunication and wireless
computing. Scale-up of the chip size during solidifica-

tion is highly desirable. However, the convection–
conduction effects often cause compositional variations
in such materials, and better knowledge is needed to
guide improved processing techniques. To demonstrate
the issues, we first consider a small, laboratory scale,
the Rayleigh number based on the ampoule radius
is 105. Fig. 8(b) shows the stream function and iso-
therm distributions. If we scale up the dimension of the
system by a factor of 10, then the Rayleigh number
becomes 108, a thousand times increase. Consequently,
the thermal environment within both ampoule and fur-
nace becomes intrinsically unsteady, due to the much
larger buoyancy effect. The stream function and iso-
therm distributions at selected time instants for this case
are shown in Fig. 9. Clearly, the flow field experience
much fluctuation in time, which results in thermal and
compositional inhomogeneity. An important implica-
tion is that the solid-melt interface will experience time
dependency in shape and in location, which, as men-
tioned, can substantially affect the quality of the crys-
tal. The computational tool can play a critical role in
helping extrapolate our knowledge in the scale-up
process.

Fig. 7. Comparisons of temperature profiles along (a) the NiAl cen-

terline, and (b) the ampoule outer wall between the modeling result

and the experimental data for three ampoule positions.

Fig. 8. The Bridgman growth system of CdTe: (a) the configuration

and input thermal profile and (b) the stream function and isotherm

distributions at Ra ¼ 105.
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3.2. Morphological simulation: fixed grid method

For the micro-level simulations where the informa-
tion such as curvature is needed in order to incorporate
the capillary effects, it is often desirable to explicitly
track solid–liquid boundaries without smearing the in-
terface. We have developed a numerical technique for
tracking unstable solidification fronts, in which the in-
terface is tracked over a fixed Cartesian grid by means of
marker particles (Shyy et al., 1996; Udaykumar et al.,
1999). Thus, the interface is maintained as a disconti-
nuity. Accurate interfacial properties such as normals
and curvatures can be extracted. The development of
microstructures of considerable complexity can be
tracked using the technique. In this approach, the in-
terface is tracked as a discontinuity and boundary con-
ditions of the Dirichlet/Neumann type are applied on
the tracked fronts. The discretization to include the

embedded boundaries involves simple measures in the
vicinity of the interface. However, one should also note
that instead of a deterministic model, one can adopt a
stochastic approach to track the evolution of the mi-
crostructures (Nastac, 1999, 2000). We will not discuss
this approach here. In our approach, for the solidifica-
tion problem the interface velocity is computed directly
from the Stefan condition, and the normal gradients of
the temperature are evaluated to second-order accuracy.
The curvature dependent boundary conditions are im-
posed at the exact interface location. The problem of
stiffness of the interface evolution in curvature-driven
growth is surmounted by using an implicit formulation
to couple the interface evolution with temperature field
evolution. The issue of change of phase of a grid point
when the boundary crosses over it is dealt with by a
simple analogy with purely Lagrangian methods. This
involves redefinition of the stencils in the points

Fig. 9. The stream function and isotherm distributions of the Bridgman growth of CdTe at Ra ¼ 108. Compared to the case shown in Fig. 8, the

present system is 10 times bigger in dimension, and is intrinsically unsteady due to stronger buoyancy.
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adjoining the interface to account for the grid points
that have changed phase. The various components of
the solution algorithm can easily be extended to 3D. To
illustrate the performance of this method, we consider a
crystal solidified in a pure undercooled melt. The diffu-
sion equation takes the form

o/
ot

¼ r � air/

where ai is the diffusion coefficient of phase i. The in-
terface is then at a temperature / ¼ 0 and the front
velocity is given by

V �
n ¼ St

ks
kL

o/
on

� �
s

�
� o/

on

� �
l

�

In each of the calculations below we place a seed crystal
in a domain with insulated boundaries. The initial
condition is a uniformly undercooled melt with the
conditions

T ð~xx; 0Þ ¼ St in the liquid

T ð~xx; 0Þ ¼ 0 it in the solid

Note that the initial condition applied here corresponds
to a nucleus of solid placed instantaneously in an un-
dercooled melt. The boundary conditions at the inter-
face for the temperature includes the effect of capillarity
and attachment kinetics and is given, in non-dimen-
sional form by a generalized Gibbs–Thomson condition

Ti þ
cl

cs

�
� 1

�
T 2
i þ rðhÞj þ lðhÞVi ¼ 0

For the surface energy parameter r and attachment ki-
netics parameter l, the following forms are adopted

rðhÞ ¼ r 1

�
þ As

8

3
sin4 1

2
mðh

��
� h0Þ

�
� 1

��

lðhÞ ¼ l 1

�
þ Ak

8

3
sin4 1

2
mðh

��
� h0Þ

�
� 1

��

The above expressions model the anisotropic natures of
the solid–liquid interface energy and kinetics. These
parameters can result in the morphological characteris-
tics along certain crystallographic directions (Howe,
1997). The role of surface energy is intrinsic in consid-
ering solidification dynamics at the morphological scale.
Furthermore, if the solidification rate is fast and the
thermodynamic non-equilibrium is present, then the
kinetic process needs to be modeled. Here, we have
adopted simple expressions to highlight the influences of
the surface energy and kinetics parameters. A sixfold
symmetry is assigned (Udaykumar et al., 1999) in the
examples presented below, namely, m ¼ 6, to examine
the effects of anisotropy on the growth of interfaces.
Based on our approach, the field calculation is second-
order accurate while the position of the phase front is
calculated to first-order accuracy. Furthermore, the ac-
curacy estimates hold for the cases where there are
property jumps across the interface. In Fig. 10 we
compute the growth of an initially fourfold-symmetric
seed crystal in an undercooled melt with a sixfold-sym-
metric surface energy. The parameters used for the case
in Fig. 10(a) are of higher surface energy coefficient and
kinetic rate constant than that in (b). Both calculations
were performed on a 500 500 grid. The effect of the
sixfold anisotropy is to promote growth in the preferred
directions to yield a sixfold symmetric structure. The
finer scales displayed by the more unstable lower surface
energy case is consistent with the expected physics. Re-
cently, Zhao and Heinrich (2001) have employed front-
tracking finite element method to simulate the same
morphological instability problems.

Fig. 10. Sixfold symmetric anisotropy in surface energy, simulations using a 500 500 grid, St ¼ 0:8. (a) Higher surface energy and kinetic rate case:

surface energy parameter r ¼ 0:002, surface energy kinetics parameter l ¼ 0:002, surface energy anisotropy As ¼ 0:4, kinetics anisotropy Ak ¼ 0.

(b) Lower surface energy and kinetic rate case: surface energy parameter r ¼ 0:001, kinetic parameter l ¼ 0:001, surface energy anisotropy As ¼ 0:4,

kinetics anisotropy Ak ¼ 0.
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4. Concluding remarks

Substantial effort has been made in computational
modeling and simulation for crystals and alloys solidi-
fication processing. One of the major trademarks of this
area is that it is truly interdisciplinary expertise from
many areas including materials science and engineer-
ing, fluid dynamics, heat and mass transfer, numerical
analysis, scientific computing and visualization, and
process design is required. Many challenges remain. For
example, issues of accurate estimation of the geometric
information, such as curvature, have not been satisfac-
torily resolved. Progress has been made in this direction
based on the existing foundation in geometric modeling
(Jayaraman et al., 1997). In particular, in the context of
large scale fluid flow and solidification phenomena, both
fixed and moving grid techniques can be utilized (Shyy,
1994; Shyy et al., 1996, 1998; Udaykumar et al., 1999;
Zhao and Heinrich, 2001). For morphological levels of
simulation, a fixed grid approach may be more suitable.
Nevertheless, to our knowledge, in the context of a
sharp interface computation, no robust and accurate
algorithm (i.e., with accuracy comparable to a second-
order field equation solver) has been reported, via
numerical demonstration, for three-dimensional sur-
face representation with moving boundaries. Multi-scale
modeling from morphological to global scales is pro-
gressing; however, numerical and modeling uncertainties
need to be further clarified. One should also emphasize
that systematic experimental information, with satis-
factory accuracy while encompassing the length scale
range discussed in this article, is largely lacking. Without
parallel efforts between computation, modeling, and
experimentation, it will be difficult to advance our
knowledge and predictive capability in a systematic and
comprehensive manner. It is anticipated that progress
will be realized if concerted efforts are made in all these
relevant areas.
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